
CIS 371 Web Application Programming
Fetch, Axios & Web Services

Lecturer: Dr. Yong Zhuang

Based on the original version by Professor Hans Dulimarta.

Which one?

2

Axios (npm library)

Fetch (browser built-in) node-fetch (npm lib)

Topics

3

● Browser fetch() function

● NodeJS axios library

● Sending HTTP GET Requests

● Handling HTTP Responses

● Sending HTTP POST Request

4

HTTP Request & Response

5

Client Server

Response

Request

HyperText: payload in response can be contents in any format
(CSS, HTML, JPG, JS, JSON, PDF, PNG, ZIP, ….)

Basic Use

6

HTTP Request & Response

7

Client
(in Browser
or NodeJS)

Server

OK 200

GET http://irs.gov/taxdocs/howtofile.pdf

Client
(in Browser
or NodeJS)

Server

OK 201

POST https://irs.gov/efile/2025

SSN=xxx-xx-xxx
date=2025-03-30
taxDoc=my-1040.pdf

URL components

8

https://blog.logrocket.com/wp-content/plugins/assets/rocket-logo.png

https://px.linkedin.com/api/collect?pid=14682&fmt=png&allowSave=true

Host name Path
resource name

query parameters

Part A: Sending HTTP GET Requests

9

Using axios

10

Example of Web Services

11

● Random Users

○ Documentation: https://randomuser.me/documentation

○ Service Endpoint: https://randomuser.me/api

● Random Quotes

○ Documentation: https://github.com/lukePeavey/quotable

○ Service Endpoint: https://api.quotables.io

● A gazillion more Web Services: https://github.com/public-apis/public-apis

○ Pick ones that allow CORS

https://randomuser.me/documentation
https://randomuser.me/api
https://github.com/lukePeavey/quotable
https://api.quotables.io
https://github.com/public-apis/public-apis

Example #1: Random User

12

Browser https://randomuser.me/api

Important: define these types to match
the JSON structure of the API response.

https://randomuser.me/api

Example #2: Random Quote

13

Browser http://api.quotable.io/random

http://api.quotable.io/random

Example #3: Random User with Query Params

14

Browser https://randomuser.me/api?results=5&nat=gb,fr&inc=name,email,picture

https://randomuser.me/api?results=5&nat=gb,fr&inc=name,email,picture

Example #4: Random Quotes with Query params

15

Browser http://api.quotable.io/quotes?limit=3

http://api.quotable.io/quotes?limit=3

Part B: Sending HTTP POST requests
(“Email” with attachments)

16

HTTP Post Request

17

Client
(in Browser
or NodeJS)

Server

OK 201

POST https://irs.gov/efile/2025

SSN=xxx-xx-xxx
date=2025-03-30
taxDoc=my-1040.pdf

Example: HTTP POST Request + Data Payload

18

Important options for POST

HTTP Post Data Payload

19

Content-Type Format of Data Payload When to Use
application/x-www-form-
urlencoded

Key-value pair, special characters
are encoded using ASCII Hex

Multiple textual data items of relatively small
size

multipart/form-data Multiple “documents”, delimited by
special lines. Binary data are
encoded to hex

Multiple text or binary data items of larger
size (images, PDF, ….), each item becomes
one attachment of your “email”

application/json JSON (converted to text) Structured textual data
text/plain Any plain text Unstructured textual data

● Request must include “Content-Type” header to inform server how to parse/unpack the data
payload

● JSON is the easiest to use
● Plain text is rarely used

HTTP POST: Plain Text attachment

20

Actual HTTP Request

Rarely used in practice

HTTP POST: JSON data attachment

21

Actual HTTP Request

● Use JSON.stringify() to convert a JS/TS
object to its string representation

● The data is delivered as plain/text

HTTP POST: application/x-www-form-urlencoded

22

Actual HTTP Request

● Key name for arrays ends with [] (empty
brackets)

HTTP POST: multipart/form-data

23

● Use this for sending multiple data which
can be expressed as key-value pairs of
significantly large size

● Each data item can be text or binary
● The HTTP protocol enforces a limit on the

maximum message size. A huge payload
must be split into smaller chunks

HTTP POST: multipart/form-data

24

● The boundary text (“letseatpizza” in
example) will be auto generated by the
utility you use, axios

● Each part may include more headers.
● Parts with binary data will include

Content-Type header with proper value
(such as “image/jpeg”) to inform the
server how to unpack each part

Actual HTTP Request

HTTP POST: multipart/form-data

25

Try this: For a real example of a multipart message, open a message that has attachments in GMail
and select “Show Original”

Security Issues

26

Browser Same-Origin Policy

27

● Scripts loaded from http://some.domain.net are allowed to fetch resources from

http://some.domain.net

● Scripts loaded from http://some.domain.net are NOT automatically allowed to

fetch from (cross-origin)

○ https://some.domain.net (different protocol)

○ http://some.domain.org (different domain)

○ http://some.other-name.net (different domain)

○ http://some.domain.net:9000 (different port)

● Cross-origin requests require special handling by the server!

Same Origin

28

// xxx.ts
fetch(“http://bar.net/one.png”)

Browser fetched at bar.net

GET /one.png HTTP/1.1
Host: bar.net
Origin: http://bar.net

HTTP Server
at bar.net

Browser fetched at bar.net

Different Origin (Cross Origin)

29

// xxx.ts
axios.get(“http://foo.net/one.png”)

GET /one.png HTTP/1.1
Host: foo.net
Origin: http://bar.net

HTTP Server
at foo.net

Browser fetched at bar.net

// xxx.ts
axios.get(“http:///a.bar.net/one.png”)

GET /one.png HTTP/1.1
Host: a.bar.net
Origin: http://bar.net

HTTP Server
at a.bar.net

Browser fetched at bar.net

// xxx.ts
axios.get(“http://bar.net/one.png”)

GET /one.png HTTP/1.1
Host: bar.net
Origin: http://bar.net

HTTP Server
at bar.net

CORS (Cross-Origin Resource Sharing)

30

● New(er) spec to allow browsers “break” the same-origin policy

● Typical Client/Server negotiation sequence:

○ Client: send an HTTP OPTION query that include the following header lines

■ “Origin” and “Access-Control-Request-Method”

○ Server: responds with the following header lines

■ Access-Control-Allow-Origin

■ Access-Control-Allow-Methods

Browser fetched at bar.net

CORS: Rejected Response (Simplified)

31

// xxx.ts
axios.get(““https://foo.net/one.png”)

GET /one.png HTTP/1.1
Host: foo.net
Origin: bar.net

HTTP Server
at foo.net

HTTP/1.1 200 OK
Content-Type: image/png
Content-Length: 1283
Date: xxxxxxxx

The-1283-bytes-of-image-binary-data-go
es-here

Response is missing
“Access-Control-Allow-Origin” header.
Image is rejected

Browser fetched at bar.net

CORS: Accepted Response

32

// xxx.ts
axios.get(““https://foo.net/one.png”)

GET /one.png HTTP/1.1
Host: foo.net
Origin: bar.net

HTTP Server
at foo.net

HTTP/1.1 200 OK
Access-Control-Allow-Origin: bar.net
Date: xxxxxxxx

The-1283-bytes-of-image-binary-data-go
es-here

33

Solving CORS issue

34

● Change the server settings to enable CORS (only possible if you are the admin of

that server)

● Access the service via a middleware

○ Your script (in the browser) sends the request to a middleware (running on the

same host where keep the script)

○ The middleware then sends the actual request to the actual server. This strategy

tricks the Browser as if the responses are coming from the middleware running

on the same host

● Using a third-party Proxy server (in place of your own middleware)

