
CIS 371 Web Application Programming
JS|TS Promise

Handling Asynchronous Results

Lecturer: Dr. Yong Zhuang

Based on the original version by Professor Hans Dulimarta.

Topics

2

● Client/Server Communication

○ Synchronous

○ Asynchronous

● Callback functions (for handling asynchronous events)

● Promise

Reference: Promise Documentation (@ MDN)

3

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Promises

Client/Server: HTTP Requests & Responses

4

Client Server

Establish connection

Close connection

Establish connection

Close connection

Establish connection

Close connection

short-lived
connections

Client Server

Establish connection

Close connection

persistent connection

Client Server

Establish connection

Close connection

HTTP pipelining

1
2
3

1
2

3

No guarantee that responses would
arrive in the order of the requests

Client/Server: HTTP Requests & Responses

5

Client Server

Establish connection

Close connection

Ti
m

e

id
le

 ti
m

e

to
ta

l t
im

e
fo

r 3
 re

qu
es

ts

id
le

 ti
m

e
id

le
 ti

m
e

Client Server

Establish connection

Close connection

Ti
m

e

to
ta

l t
im

e
fo

r
3

re
qu

es
ts

id
le

synchronous asynchronous

Synchronous vs. Asynchronous Requests

6

Send
request

Client idle/blocked
(performs no work)

Use
response

Client performs other
work

Handle
request

Send
response

CLIENT:

SERVER:

Synchronous 74 ms

Send
request

Client performs other
work

Use
response

Client performs the rest
of otherwork

Handle
request

Send
response

CLIENT:

SERVER:

Asynchronous 24 ms50 ms

Technical challenge: how do we allow the server
asynchronous response to interrupt the client
current work?

Sending Requests: easy
Receiving Async Responses: requires extra setup

7

Callback Actions
(JS Callback Functions)

8

You are number 17 in line…..

9

Would you like us to call you back?

1-888-I-CAN-HELP

10

connect & extremely long waitDial talk with tech support watch movie

Option #1: without callback

short waitDial talk with tech support resume movie

Option #2: with callback

setup callback? actual callback

watch movie

Synchronous Call (in code)

11

connect & extremely long waitDial talk with tech support watch movie

1-888-I-CAN-HELP555-4321

Order of execution = order of
line of code

Async: “out-of-order” execution
(Order of execution ≠order of line of code)

12

Async Phone Calls with Callback (in code)

13

1-888-I-CAN-HELP555-4321

short waitDial talk with tech support resume movie

setup callback? actual callback

watch movie

15 minutes

15 mins later

Asynchronous (incoming call) while you’re watching movie

Callback fns (Fat Arrow)

14

named function fat arrow

1

2

3

4

5

Async: order of execution ≠ order of line of code

15

1-888-I-CAN-HELP555-4321

short waitDial talk with tech support resume movie

setup callback? actual callback

watch movie

15 minutes

1

2

3

4

5

Tech: “But, you have to talk with my manager”
(Nested Callback)

16

17

setup_cbDial talk with tech resume moviemovie setup_cb

15 minutes

talk with mgr resume

35 minutes

1

2

3

4

5

6

7

8

Nested
callbacks

How to Initiate Async HTTP Requests?

18

● fetch() function

○ Native in browser

○ NPM node-fetch

● Axios library

● Both fetch() and axios() use JS Promise

IOU = I owe you note
Promise to pay debt/loan

19

Borrowing Money: Promise Now, Pay Later

20

I will pay U back $1000 in a month

Today’s date
Signed: Bob

Bob’s promise (now)

Bob

Today (now): Beth receives a promise

Bob

Future

1 month later (future): Beth receives cash

A promise = now confirmation of future action(s)
A JS promise = a “now” object representing data

which will become available in the future

21

Promise Example

22

Compare the order of execution

Loan is either paid-off or defaulted
Promise is either resolved or rejected

23

Borrowing Money: Promise Now, Never Pay

24

I will pay U back $1000 in a month

Today’s date
Signed: Bob

Bob’s promise (now)

Bob

Today (now): Beth receives a promise

Bob

Bob
Denied
to Pay

1 month later (future): Beth gets none

Promise settlement: resolve() or reject()

25

 JS Promise

26

● Basic methods: then(), catch(), finally()
● Basics static functions

○ Promise.resolve()
○ Promise.reject()

● Advanced (for handle multiple concurrent promises)
○ Promise.all(array): wait until all the promises in the array are resolved
○ Promise.allSettled(array): wait until all the promises in the array are either

resolved or rejected
○ Promise.any(array): wait until ONE of the promises in the array is

resolved
○ Promise.race(array): wait until ONE of the promises in the array is either

resolved or rejected

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

then-able chains

27

Then and then and then and …

28

Return from a then() becomes a Promise
to the next then() inline

Demo

https://www.typescriptlang.org/play?#code/GYVwdgxgLglg9mABGKALACgJxgWwKYAUKqAXMiDgEZ6YCUZWcOMAzngDwtTZgDmAfIgDeAWABQiRDGCIiaRO0QBGAAxraw8ZMmY8UEJiSNmbAHS6WcADYA3QgCIAKqlZSWiNHmTysuPPdoAbi1EAF9EPCs2RF19Q0RjVjxzPAArPGgCewBhAEMwAHIoRAgmAAcQKC8y7HwA4LFQ8VBIWAQPOAAlJnyAOQoaXKsCGDAKqH6cEi4eXnoZ0d5RCRi9AyR7AElt+wamsXFSsEsrZKs4XiyAZShczCh68WJffAJVFVoQ008wAgIasgLPgaAC8gmW2lWcSQUC6PTAk0GwxqQRCoU+K2+qDwvwImCYeEB3EWoPBIUkRxOZwuWVyiBYuRwZVOMTgjPI+EwQ0Q9gANKz8KiVuiGpTrNTLvYAOq5KAQFx8RCOABq9UQ4iAA

Then and then and … (promise “unpacked”)

29

Demo

https://www.typescriptlang.org/play?#code/GYVwdgxgLglg9mABGKALACgJxgWwKYAUKqAXMiDgEZ6YCUZWcOMAzngDwtTZgDmAfIgDeAWABQiRDGCIiaRO0QBGAAxraw8ZMmY8UEJiSNmbAHS6WcADYA3QgCIAKqlZSWiNHmTysuPPdoAbi1EAF9EPCs2RF19Q0RjVjxzPAArPGgCewBhAEMwAHIoRAgmAAcQKC8y7HwA4LFQ8VBIWAQPOAAlJnyAOQoaXKsCGDAKqH6cEi4eXnpEtk5uUYFRCRi9AyNMJiSUy1sHAEkT+vEmsXFSsAPkqzheLIBlKFzMKDOxYl98AlUVWghUyeMAEAg1MgzFYaAC8gjW2g2cSQUC6PTAk0GwxqQRCoUB62BqDwoIIO3wkOWfFh8JCkmut1M90e9lyiBYuRwZSsXh2nPI+EwQ0Q9gANDEmHhcet8Q0GdY7g8sgB1XJQCAuPiIRwANXqiHEQA

Online Pizza Order & 3rd party payment

30

Online Pizza Order (code setup)

31

PizzaHat

PizzaHat

PlayPal

Online Pizza Order (chaining)

32

PizzaHat

PizzaHat

PlayPal

Promise: with finally

33

The finally method is used to specify a block of
code that will run after the promise is settled,
regardless of whether it was resolved or rejected.

Promise: put them all together

34

Any Promise.reject() here will be
caught by

Promise.reject() skips then-chain until it finds a .catch

async & await

35

Async functions

36

The async keyword makes asynchronous
functions look and behave more like
synchronously way by

● removing the need for explicit promise
creation.

● using the await keyword to pause the
async function execution

What is the difference between
promise functions with and without
the async keyword?

await: rewrite in synchronous style

37

Await can only be used inside async functions

