
CIS 371 Web Application Programming

HTTP

Lecturer: Dr. Yong Zhuang

Based on the original version by Professor Hans Dulimarta.

HTTP

2

● HyperText Transfer Protocol

● Invented by Tim Berners Lee @ CERN

● A protocol for delivering resources over the web

● TCP/IP connections, default (server) port 80

● HTTP client & HTTP server

Other network Transfer Protocols

3

● FTP: File Transfer Protocol

● FTPS: Secure FTP

● SMTP: Simple Message Transfer Protocol

● NTP: Network Time Protocol

Why learn the details of HTTP?

4

Why learn the details of HTTP?

HTTP requests from your program

5

Web Client/Server Architecture

6

(5) Run Code (2) Run Code

(1) Send “user input”

(3) Send “contents” (HTML + CSS + JS & other data)

(4) Present “contents”

(6) Handle user input

HTTP Communication Model

7

HTTP Client

HTTP Server

HTTP Client

HTTP Client

…

request

response

request

response

request

response

Clients initiate the connection!!!

Transaction Timeline (TCP Sockets)

8

HTTP Client HTTP Server
TCP Connect

Connect OK

HTTP request

HTTP response

Client Write

Server Read

Server Write

Client Read Close Connection

HTTP URL: Uniform Resource Locator

http:// www.gvsu.edu /files/registrar/622GX/7155/ admission.pdf

protocol
(URL scheme) hostname path to resource

http:// www.gvsu.edu /files/img/article/frontpag/ 5123FG73A.jpg
http:// www.gvsu.edu /pcec/advising/ index.html

HTTP Messages: Request & Response
Demo: URL & Web Dev Tools

10

http://info.mysite.org/about/

11

Client Server
(info.mysite.org)

GET /about HTTP/1.0
Host: info.mysite.org
Accept-Language: en-us

HTTP/1.0 200 OK
Content-Type: text/html
Host: info.mysite.org

<html> <head><title>Welcome</title></head>
 <body>
 <h1>To my site</h1>
 </body>
</html>

Notice the blank line after the
“Accept-Language” header

Web Browser DevTools
(Network Tab)

12

http://info.cern.ch

Fetch the content via the command line

13

curl --verbose http://info.cern.ch

(On Linux/OSX/Windows 10 WSL)

http://info.cern.ch

Fetch the content via the command line

14

iwr http://info.cern.ch -UseBasicParsing

(On Windows PowerShell)

HTTP Request/Response

15

Request/Response line

line

1

Header1: value1
Header2: value2
… more header lines here … HeaderN:
valueN

2
3

…
N

One blank lineN+1

message body
(plain text or binary)

N+2
N+3
N+4

…

required

Header lines (optional)

required

Message body (optional)
● Data for POST requests, examples

○ Encrypted userid/password
○ Encrypted credit card details
○ Content of uploaded file(s)
○ etc.

● Returned contents of server responses
○ HTML doc
○ Image data
○ etc.

HTTP headers of interest to web developers

16

Header Description Example
Accept Inform server media-type to respond Accept: image/jpg
Accept-Langua
ge

Inform the server which languages the
client is able to understand

Accept-Language: en-US; en-UK

Content-Type Media type of the returned content Content-Type: plain/text
Content-Langu
age

The languages of the content Content-Language: en-US

Date Date and time of the message Date: Mon, 21 Aug 2017 18:14:36 GMT
ETag Identifier used by caching algorithms ETag: “"8a9-291e721905000”
Host Specify the domain name of the intended

server (mainly for Virtual Hosting)
Host: www.personal.me:5555

HTTP 1.0 Commands (Request Methods)

17

● GET
● POST
● HEAD

(like GET but the server responds only with header, no data)

More-frequently used

● PUT
● DELETE
● OPTIONS

Less-frequently used

Operation HTTP Request
Create POST
Read GET
Update PUT
Delete DELETE

POST: upload file to Bb

18

Client Server
(mybb.gvsu.edu)

POST /path/to/your/course HTTP/1.0
Host: mybb.gvsu.edu

The text/binary contents of your File to
upload to Bb will be included as
attachments here

HTTP/1.0 200 OK
Content-Type: text/html
Host: info.mysite.org

Additional message from server goes
here

HTTP Status Code

19

Status Code Description
1xx Informational messages
2xx Success messages
3xx Redirect message
4xx Error on the client’s behalf
5xx Error on the server’s behalf

HTTP Connections: Persistence

20

HTTP Client HTTP Server
Connect & Send request#1

Send response#1 & close

Connect & Send request#2

Send response#2 & close

HTTP 1.0: non-persistent

HTTP Client HTTP Server
Connect

Connect OK

Send request#1

Send response#1

HTTP 1.1: persistent

Send request#2

Send response#2

close

HTTP 1.0 vs. HTTP 1.1

21

● One request per connection

(non-persistent)

● Cache control is timestamp based with

one-second resolution (inaccurate)

● Client cannot request a portion of a

resource

● Responses are delivered in one big chunk

● N requests per connection (persistent)
● Response can be delivered in chunk
● Cache control is content based, responses

include entity tag (Etag), similar to hash
value

● Clients can request partial content
○ “Range:” header line in HTTP

request
● Responses may be delivered in many small

chunks

HTTP 1.0 HTTP 1.1

HTTP 1.1 vs. HTTP 2

22

● HTTP messages encoded in text format

● Require multiple connections to achieve

concurrency

● Uncompressed response headers

● No resource prioritization

● HTTP messages encoded in binary format
○ Message = request or response

● Multiple concurrent channels on a single
connection

● Compressed response headers
● Resource prioritization (important requests

complete more quickly)

HTTP 1.1 HTTP 2

Secure HTTP HTTPS

23

HTTPS

24

● HTTP Secure

○ HTTP over TLS (Transport Layer Security)

○ HTTP over SSL (Secure Socket Layer)

● PKI (Public Key Infrastructure)

HTTPS

25

● HTTP Secure

○ HTTP over TLS (Transport Layer Security)

○ HTTP over SSL (Secure Socket Layer)

● PKI (Public Key Infrastructure)

private key

public key

Encrypted Message (with public+private key pair)

26

Client Server

“Where is the MAK building?”

Sender Recipient

Encrypted Message (with public+private key pair)

27

Client Server

“Where is the MAK building?”

+

Sender Recipient

Encrypted Message (with public+private key pair)

28

Client Server

“Where is the MAK building?”

+

Sender Recipient

“HSY&&$%^dygqKJtf9)FDD”

encrypted

Encrypted Message (with public+private key pair)

29

Client Server

“Where is the MAK building?”

+

Sender

“HSY&&$%^dygqKJtf9)FDD”

Recipient

“HSY&&$%^dygqKJtf9)FDD”

Encrypted Message (with public+private key pair)

30

Client Server

“Where is the MAK building?”

+

Sender

“HSY&&$%^dygqKJtf9)FDD”

+

Recipient

“HSY&&$%^dygqKJtf9)FDD”

Encrypted Message (with public+private key pair)

31

Client Server

“Where is the MAK building?”

+

Sender

“HSY&&$%^dygqKJtf9)FDD”

+

Recipient

“HSY&&$%^dygqKJtf9)FDD”

“Where is the MAK building?”

Secure Message Exchange (over Persistent
Connection)

32

HTTP Client HTTP Server

Connect

Connect OK+ Certificate (with public key)

Client Secret Key (encrypted using server public key)

server private key

server public key

Encrypted HTTP request (using client secret key)

Client Secret key
(decrypted using
server private key)

Request
(decrypted using
common secret key)Response

(decrypted using
client secret key)

Encrypted HTTP response (using client secret key)

GET or POST over secure connections

33

Client Server
(remote-server.io)

POST /path/to/your/course HTTP/1.0
Host: remote-server.io/

The text/binary contents of your File to
upload to Bb will be included as
attachments here

HTTP/1.0 200 OK
Content-Type: text/html
Host: info.mysite.org

Additional message from server goes
here

Unencrypted text

Encrypted text

Uploading Sensitive Data over Encrypted Channel

34

● Embed the sensitive data in a GET request query string

GET /place/my/order/?creditcard=xxxxyyyyzzzzuuuu&zip=12345 HTTP/1.0
Host: www.amazon.co.uk

● Embed the sensitive data in a POST message payload

POST /place/my/order HTTP/1.0
Host: www.amazon.co.uk

creditcard=xxxxyyyyzzzzuuuu
zip=12345

Uploading Sensitive Data over Encrypted Channel

35

● Embed the sensitive data in a GET request query string

GET /place/my/order/?creditcard=xxxxyyyyzzzzuuuu&zip=12345 HTTP/1.0
Host: www.amazon.co.uk

● Embed the sensitive data in a POST message payload

POST /place/my/order HTTP/1.0
Host: www.amazon.co.uk

creditcard=xxxxyyyyzzzzuuuu
zip=12345

Unencrypted

Unencrypted

Encrypted

 Certificate and Certificate Authority (CA)

36

Certificate: Proof of Your Identity Certificate Authority:
Trusted Organizations who issue certificates

Michigan IDs vs. Browser Certificates

37

Michigan IDs (Browser) Certificates
A formal proof of your identity A formal proof of the web server identity
Issued and signed by Secretary of State Issued and signed by Certificate Authority
Provide other proof of identity (birth
certificate, passport) to apply for Michigan
ID to the SoS

Certificate Signing Request: server request a CA to
sign the server’s identity (public key) using the CA key

The SoS is a trusted government body Trusted CAs

Obtaining Web Certificates (“Web ID Cards”)

38

Proof of identity (passport,
GOV ids, birth certificates)

Private+Public Key Pair Certificate Authority
(CA)

Known to Browsers

Certificate (signed by CA)

Web Certificate
(signed by CA’s private key)

Watch:
http://www.youtube.com/watch?v=iQsKdtjwtYI

39

http://www.youtube.com/watch?v=iQsKdtjwtYI

